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Abstract 
Precision oncology heavily relies on dividing cancer into different subtypes. Single-
omics data do not accurately reflect the complex ways in which molecules interact 
and collaborate in tumor growth and development. Advances in high-throughput 
methods have enabled the generation of genomic, transcriptomic, epigenomic, and 
proteomic data, providing new opportunities to examine cancer. However since 
various types of data must be used together, there are large computational obstacles 
involved. In this paper, we look into ways that combine different machine learning (ML) 
methods for integrating various kinds of data to find cancer subtypes. We describe the 
main data forms, methods for data integration, model design strategies, testing 
techniques, and new difficulties. In addition, we address the impact of biological 
significance, easy understanding, and medical application on the future of intelligent 
cancer subtyping. 
Keywords: Multi-Omics Integration, Cancer Subtyping, Precision Oncology, Machine 
Learning, Translational Bioinformatics 
 
Introduction 
Cancer is a leading cause of death around the world and better recognition 
of its subtypes greatly helps with the diagnosis, prognosis, and treatment 
(Zhang et al., 2023). To date, using traditional methods just to look at tissues 
and symptoms is often not enough to detect all the detailed molecular 
changes that occur in many tumors (Ma et al., 2024). Many genomic changes 
such as mutations, gene expression, patterns of DNA methylation, and 
modifications in proteins, can now be analyzed in large populations with the 
help of modern sequencing technology (Satam et al., 2023). The variety of 
biological data now makes it possible to study cancer at the level of its 
molecules (Wang et al., 2023). They could pave the way for more targeted 
and helpful ways to subtype different cancer types for patients. Even so, 
making different and complicated types of data compatible in a single 
analytical framework is challenging methodologically and computationally. 
Here, intelligent machine learning techniques, mainly those built for 
handling complex multi-modal datasets, have proven very useful (Ahmed et 
al., 2023). This work focuses on how blending omics  (Chakraborty et al., 
2024) techniques with advanced machine learning approaches (Mokoatle et 
al., 2023) may find cancer subtypes linked to successful clinical results, 
strengthening the design of therapies (Kumar et al., 2024). 
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Background and Significance 
Cancer Subtyping: A Clinical Imperative 
Cancer is not a singular disease but a complex collection of diverse 
conditions, even within what appears to be a single type (Brown et al., 2023). 
How the disease develops and how effective treatment is depends on the 
underlying variety of cancer types (Swanton et al., 2024). We find that breast 
cancer which is widely treated, can be diagnosed in several different forms. 
Instead, the disease is separated into subtypes according to specific types of 
molecules, for example, luminal A, luminal B, HER2-enriched, or basal-like 
(Mayrovitz, 2022). Every subtype is identified by its own set of genes 
expressed, proteins present, and the behaviors of its cells. Clinical decisions 
often depend on molecular classifications of cancer. In the case of luminal 
breast cancer, hormone therapy tends to help patients, who usually have a 
better chance of recovering (Grimm & Mazurowski, 2020;Testa et al., 2020). 
In contrast, persons with HER2-enriched or basal-like (most likely triple-
negative) cancer subtypes may be treated more aggressively with targeted 
medications and chemotherapy (Zagami & Carey, 2022). That’s why making 
sure these subtypes are precisely labeled is crucial for successful care 
(Fusco & Viale, 2024). Tailoring cancer treatment becomes much easier for 
oncologists when they can classify types of cancer and how they grow inside 
a patient. Cancer treatment is more accurate, more likely to be successful, 
and less likely to result in unnecessary problems (Riedl et al., 2024). Besides, 
using pathology helps doctors predict the severity of the disease, its 
likelihood of returning, and the chances of successful treatment. How we 
categorize cancer based on its genes affects the treatment results and the 
quality of life patients will experience. Supplying and studying biomarkers is 
vital for clinical reasons and helps close the gap between labs and the care 
patients receive, making it more likely they will survive cancer (Das et al., 
2024; Prasanth et al., 2023). 
 
The Multi-Omics Revolution 
Multi-omics technologies have allowed biomedical researchers to see 
cellular processes from a new, multidirectional perspective. By not 
depending on one method, the multi-omics approach shows how diverse 
parts of a cell interact. Genomics is important for finding genetic differences 
in DNA, among them mutations and copy number changes that could be the 
main causes of cancer. Meanwhile, transcriptomics studies the various 
patterns of gene activity that determine how RNA is formed from the initiation 
of gene transcription. Thanks to epigenomics, we can now see how 
methylation and similar chemical changes can change gene activity without 
touching the core genetic code. In the end, proteomics examines proteins 
that make up the majority of a cell’s ability to function and are the result of 
transcription and translation. Every omics provides different, important 
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information and these fields are linked. Because of their integration, 
researchers can build a clear and united understanding of cancer biology, 
spotting molecular signatures that cannot be found when studied separately. 
The use of this whole-body strategy is important for recognizing cancer’s 
seriousness and may benefit progress in precision oncology (Chen et al., 
2023; Gutierrez Reyes et al., 2024;Hayes et al., 2024). 
 
Machine Learning for Multi-Omics Integration 
ML strategies for multi-omics integration can be broadly categorized based 
on their learning paradigms (supervised, unsupervised, and semi-
supervised) and data integration frameworks (early, intermediate, and late 
integration). 
 
Early Integration (Concatenation-based) 
Concatenation-based integration means merging all of the different omics 
information into a single feature matrix before training. Since all the data is 
seen as one input, this process is easy to understand and use. However, 
since omics datasets can be very different in size and shape, it is often hard 
to avoid overfitting and work with such a large amount of information. Many 
people in this field use PCA, t-SNE, and autoencoders to reduce the number 
of dimensions in datasets. These methods make the data take up less space, 
remove background noise, and pick out key features which improves how 
easy it is for the model to learn and be used in other situations. 
 
Intermediate Integration (Latent Representation Learning) 
Intermediate Integration is known as latent representation learning and 
handles the fusion of multi-omics data more precisely. Rather than 
combining the raw data from every omics type, the method first does 
independent processing on each dataset to generate useful lower-
dimensional representations. By using these compact representations, we 
clear some of the noise and unnecessary redundancy found in the original 
data. Afterward, the different latent features from all omics layers are put 
together to create a single fused feature space for further work. Applying this 
method fixes data problems and makes it easier to link and compare several 
omics datasets. In this level of integration, researchers use Multi-Omics 
Factor Analysis to observe both common and unique parts in the data, CCA 
to search for relationships, and a range of deep learning solutions to extract 
complex features. Thanks to latent features, intermediate integration can 
better mix and use the complementary information between omics than 
simple concatenation alone. 
 
Late Integration (Model-level Fusion) 
In Late Integration, each dataset is managed independently during the early 
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stages, rather than by using any kind of mixed model. With this strategy, 
several models are trained on different omics data independently, so every 
model can learn what is special about its dataset. All the outputs from the 
individual models are merged when making the most critical decision. 
Unifying results can be done by ensemble learning which combines many 
predictions from different neural networks to get better accuracy or by using 
multi-view learning, mixing details from several data sources to come to a 
single conclusion. Using late integration means that data scientists can gain 
from using varied models which helps them process complex data with 
diverse characteristics (Ballard et al., 2024;Picard et al., 2021). 
 

Fig. 1: ML Integration Strategies: Early, Intermediate, Late 

 
 
Diverse Machine Learning Strategies 
Unsupervised Learning 
In cancer subtyping, unsupervised learning is very important and k-means, 
hierarchical clustering, and spectral clustering are commonly used to this 
end. They organize patients using similar molecular tests to see if any groups 
perform similarly and show a pattern of the disease. Lately, modern 
clustering solutions have appeared to help overcome the difficulties of 
handling data from multiple types of “omics.” SNF, iClusterBayes (Mo et al., 
2018), and NEMO (Rappoport and Shamir, 2019) techniques are available to 
bring together different data from omics research. They achieve this by 
combining and blending the similarity information found in data types such 
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as microarray, methylation, and copy numbers. Comprehensive sample 
networks permit the identification of resilient and meaningful groups that 
symbolize various cancer subtypes, increasing our knowledge of tumor 
heterogeneity and options for treatment (Trezza et al., 2024). 
 
Deep Learning Approaches 
Deep learning is becoming an important way to integrate multi-omics data 
because it can find complex connections between different biological data 
sources. Because of this, deep learning models are highly effective at 
working with the high-dimensional and potentially noisy data found in omics. 
For instance, autoencoders are frequently used to separate important 
biological signals from the raw information in the data they receive. VAEs 
(Ranjbari and Arslanturk, 2023) and GANs (Ahmed et al., 2022) make use of 
probabilistic methods and the production of synthetic data to improve how 
well we understand the data and increase the models’ ability to adapt to 
unseen situations. Besides, state-of-the-art frameworks MOGONET (Lan et 
al., 2025) and SUPREME (Kesimoglu and Bozdag, 2023) combine information 
from several omics layers at the same time. Because these architectures 
process data from multiple omics groups and recognize device differences, 
they present a fuller and more detailed image of the mechanisms involved in 
different cancer subtypes (Ballard et al., 2024). 
 
Graph-based and Manifold Learning Methods 
Graphs and manifold learning are useful ways to emphasize the details in 
relationships in big multi-omics datasets. In these methods, samples and 
features are part of a graph which lets them capture activities that nearby and 
separate units interact with. GCNs make it possible to pass information 
across elaborate biological networks and gain knowledge from the 
relationships among the data. Hypergraph (Wang et al., 2024) learning takes 
this now by including relationships where a single hyperedge is connected to 
more than two nodes. Also, using spectral clustering on P-Laplacian graphs 
(Valous et al., 2024) allows one to uncover the organization of the data and 
cluster cancer samples, revealing different cancer subtypes. This 
combination of graph approaches offers a clear and mathematically sound 
way to work with and understand multi-omics datasets (Patton-López, 2022; 
Valous et al., 2024;Wandy & Daly, 2021). 
 
Evaluation Metrics and Validation 
The reliability, usefulness for healthcare, and scientific meaning of cancer 
subtyping techniques should be evaluated. To confirm that clustering is 
effective, the Silhouette Score, Adjusted Rand Index (ARI), and Normalized 
Mutual Information (NMI) are used. These methods tell us how accurate and 
consistent the groupings are in contrast to the rest of the data. To test how 



Towards Intelligent Cancer Subtyping Mukhdoomi & Chachoo 

TRIM 13(1) 85 

the subtypes are relevant for patients, survival analysis workers often use a 
log-rank test to see if they result in different survival times. Enrichments in 
selected pathways and biomarkers are examined to determine if the clusters 
are associated with particular functions or associated with various diseases. 
Strong validation methods are critical to guarantee good performance and 
general application which includes verification in different sections of the 
same data, cohort evaluation, and comparison with the major divisions 
defined in the TCGA. These multilayer evaluation strategies help us fully 
assess a method, guiding us in making better and clinically important 
divisions of subtypes (Rainio et al., 2024). 
 
Case Studies and Applications 
Several large-scale studies have highlighted the promising impact of 
machine learning-driven multi-omics integration in advancing cancer 
subtyping and personalized medicine. For the integration of genomic data, 
the Cancer Genome Atlas (TCGA) The National Cancer Institute(n.d.) has 
helped as a reference, by supplying large, comprehensive datasets used to 
measure and check new methodologies. With that resource on hand, 
advanced models have shown good results. By using MOGONET, researchers 
were able to find meaningful subtypes of glioblastoma and lung cancers 
(Huang, 2021). In chronic lymphocytic leukemia, MOFA+ showed it was 
useful by revealing interpretable latent factors that affect the differences 
seen between patients, giving helpful insight into how the leukemia develops. 
Using these examples, it becomes clear that smart methods in subtyping 
which rely on machine learning, can take complex data from omics to 
improve both diagnostics and treatment choices in oncology. 
 
Challenges and Future Directions 
Despite significant advancements in multi-omics integration, several key 
challenges continue to hinder progress and present opportunities for future 
research. One major challenge is data heterogeneity and missingness. 
Handling the difference in data formats and missing values is a major 
difficulty for big data analysis. A lack of certain omics data for a patient is 
usual in clinical and research fields because it is often limited by things such 
as costs or space. A lack of full data during integration makes it necessary to 
build reliable procedures for filling in the gaps using information from similar 
data sources. Another critical issue is model interpretability is yet another 
important matter to address. Many leading integration methods that rely on 
deep learning give results without clearly explaining how they came to that 
decision. To help these models be used in clinical practice, their workings 
must be explained in a way that helps understand the biological reasons for 
the results. Computational scalability, many issues related to processing 
large amounts of data still need to be resolved. Small algorithms will not work 
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well, as multi-omics data is usually spread out over a large number of 
dimensions and comes from different sources. As data becomes bigger and 
more complicated, there is a greater need for efficient tools and fast 
computers, showing that new ideas in algorithms and computer design are 
still necessary. Finally, ethical and privacy concerns loom large as 
integration methods become more powerful and widely used. Ensuring all 
patient data is safe and genetics data is managed according to ethical 
guidelines is most important. Keeping data secure and acting ethically is 
necessary for researchers, doctors, and others involved to maintain the 
public’s trust and respond to new methods of sharing and receiving consent 
in the field of genomics research. Addressing these challenges through 
interdisciplinary collaboration and innovative methodologies will be 
essential to fully harness the potential of multi-omics integration for 
precision medicine in the years to come. 
 
Future Directions 
The future brings many innovative and significant developments to multi-
omics integration. Federated learning shows much promise because it lets 
different institutions study data together while still protecting patient privacy. 
Federated learning keeps sensitive data on users’ local devices and doesn’t 
move it between servers, protecting privacy and providing access to different 
kinds of data. Because of this breakthrough, multi-center studies may 
happen faster and make us confident that results can be applied elsewhere. 
At the same time, there is more attention being given to XAI which aims to 
help explain the ways complex machine learning models arrive at their 
decisions. When insights are easily understood, XAI allows clinicians to trust 
the models, choose the best actions, and use these advanced health 
technologies more widely. With the help of detailed medical information and 
imaging data, multidimensional maps of disease can be made from multi-
omics data. It helps detect not just changes at the molecular level but also 
changes in appearance and body structure, giving a better snapshot of a 
patient’s health and making diagnoses, predictions, and treatment choices 
more accurate. Now, researchers are investigating multi-omics analyses of 
cells or tissues as time goes by, helping to describe the development of 
cancer. Tracking changes over time in these analyses provides information 
about disease development, how well treatments work and patient 
outcomes, helping to develop better and more flexible treatments. Overall, 
these new directions suggest a promising route ahead, ensuring multi-omics 
integration is safer, easier to explain, covers more areas, and results in better 
progress for personalized medicine. 
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Conclusion 
The integration of multi-omics data through a variety of sophisticated 
machine-learning strategies marks a profound transformation in the field of 
cancer subtyping. Classifying cancer by simple clustering was traditionally 
difficult because it did not capture the many biological differences inside 
tumors. Recently, using powerful new tools, we have discovered patterns in 
tumors that show much greater levels of detail than before. Such smart 
frameworks take advantage of all the omics fields like genomics, 
transcriptomics, proteomics, and epigenomics and also handle the 
unusually complex way biological data works, making us notice incredibly 
fine subtypes that were difficult to notice before. When computational tools 
can explain what they are thinking interpretably and deal efficiently with an 
increasing amount of data—scalable they are more and more useful in 
everyday healthcare. Because of this transition, cancer treatments can now 
be shaped perfectly to fit the individual changes in each patient’s tumor. 
When multi-omics data are combined with advanced machine learning 
methods, precision oncology sees real progress, giving us valuable new 
evidence and uses in medical practice. It (sys/enabling services) improves 
diagnostics, leads to better forecasts, and helps create therapies that are 
customized for different patients, boosting the achievements of biomedical 
research and changing our approach to cancer. 
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